Synthesis of the Two Enantiomers of a Tetrahydro- β -carboline from L-(-)-Tryptophan

Georges Massiot* and Tshilundu Mulamba

Faculté de Pharmacie, ERA au CNRS no. 319, 51 rue Cognacq-Jay, 51096 Reims Cedex, France

Pictet–Spengler condensations of methyl 4-formyl-2,2-bis(phenylthio)butyrate with tryptophanamide and N^{b} -benzyltryptophanamide are stereospecific; dehydration of the adducts [(CF₃CO)₂O] followed by cyanide elimination (NaBH₄) yields tetrahydro- β -carbolines of opposite absolute confugurations, in high optical purities as demonstrated by n.m.r. examination of their methoxy-mandelamides.

Tryptophan is frequently used instead of tryptamine in the synthesis of optically active β -carbolines. Associated with

this approach are two problems, namely the control of the cis/trans ratio arising from Pictet-Spengler reactions, and

the removal of the superfluous carbon atom. Many solutions to the second problem have been proposed,¹⁻⁴ and the use of N^{b} -benzyltryptophan methyl ester allows the selective preparation of isomers which have the newly introduced chain *trans* to the tryptophan carbonyl groups.⁵ We now report an approach whose salient features are the simple removal of the extra carbon atom and the preparation as required of either enantiomer of a tetrahydro- β -carboline from the same L-(-)-tryptophan.

(**11)** [α]₀ - 232° (CHCl₃)

Although insoluble in normal solvents, the carboxamides (1) and (2), available from L-(-)-tryptophan, are valuable partners in Pictet-Spengler reactions. Their condensation with methyl 4-formyl-2,2-bis(phenylthio)butyrate (3)⁶ was accomplished in two steps: imine formation with water removal by azeotroping with benzene, then protonation by CF_3CO_2H in CH_2Cl_2 at room temperature to yield the esters (4) (70%) and (5) (75%).

As expected from Cook's findings⁵ the ester (5) is the diastereoisomerically pure *trans*-isomer as demonstrated by ¹³C n.m.r. spectroscopy.⁷ Most surprisingly, however, the condensation (1) \rightarrow (4) yields within the limits of n.m.r. detection a single isomer of opposite configuration at C-3[†] (alkaloid numbering). Compound (5) was uneventfully trimmed of its extra carbon atom by the sequence amide

(5) \rightarrow nitrile (6) [(CF₃CO)₂O]^{‡8} \rightarrow amine (+)-(7) (NaBH₄, 70% overall yield), [α]_D +44° (CHCl₃).

In an analogous fashion the secondary amine (4) was converted into the trifluoroacetamidonitrile (8) and thence into the amine (9), $[\alpha]_D - 27^\circ$ (CHCl₃), using KBH₄ in boiling MeOH. For correlation purposes, (9) was benzylated (PhCH₂Br, NaHCO₃, MeCN, heat, 60%) to give the mirror image (-)-(7) (31% overall yield), $[\alpha]_{\rm D}$ -41° (CHCl_a). The stereointegrity of (9) was demonstrated by its conversion into the mandelamide (10) (O-methylmandelic acid,⁹ EEDQ¹⁰) and by comparison with the amides (10a,b) obtained from racemic (9).6 Although apparently homogeneous on t.l.c., the mixture (10a,b) showed in its ¹H n.m.r. spectrum two three-proton singlets for the OCH₃ ethers (δ 3.40 and 3.44) and two one-proton singlets for the mandelic protons (δ 5.01 and 5.06). The mandelamide derived from (-)-(9) shows only one set of these signals (CH₃ at δ 3.44, CH at δ 5.01). We thus estimate the optical purity of (-)-(9) to be at least 95 % (optical purity of O-methylmandelic acid is 99%).

To illustrate the usefulness of the sequence (-)-(9) has been converted in three steps:⁶ (a) PhSH, NaH: reductive desulphenylation and lactam formation; (b) *m*-chloroperbenzoic acid: sulphoxide formation; (c) toluene, reflux:

 $^{^+}$ 13 C n.m.r. spectrum of (4) (selected values): δ 176.4 (s, CO₂CH₃), 170.0 (s, CONH₂), 136.4 (d), 136.1 (d), 135.3 (s), 130.9 (s), 130.8 (s), 129.9 (d), 128.9 (d), 127.2 (s), 121.7 (d), 119.5 (d), 118.2 (d), 111.2 (d), 108.7 (s), 107.9 (s), 69.2 (s, C-16), 57.5 (d), 52.9 (d + q), 31 (t), 29.5 (t), and 25.4 (t) p.p.m.

⁺¹³C n.m.r. of spectrum (6) (selected values): δ 169.9 (s, CO), 137.2 (s, C-13), 136.6 (s, C-2), 136.2 (d), 135.7 (d), 132.5 (s), 131.1 (s), 130.9 (s), 129.6 (d), 128.7 (d), 126.7 (s), 121.8 (d), 119.5 (d), 117.9 (d), 117.4 (s, CN), 111.4 (d, C-12), 106.6 (s, C-7), 68.7 (s, C-16), 55.3 (d), 54.7 (t, CH₂C₆H₅), 52.7 (q, OCH₈), 48.2 (d), 29.8 (t), 26.7 (t), and 25.1 (t) p.p.m.

elimination, into the optically active unsaturated lactam (11), $[\alpha]_D - 232^\circ$, an intermediate for the synthesis of anthirine.¹¹ We are currently investigating the use of this reaction sequence in the synthesis of pentacyclic alkaloids of the heteroyohimbine type.

We thank Mr. Merle, I.C.I.-Pharma, for kindly performing the n.m.r. experiments with the mandelamides, the government of Zaire for support (to T. M.), and Professor Jean Lévy for fruitful discussions.

Received, 27th June 1983; Com. 858

References

- 1 S. Yamada, K. Tomioka, and K. Koga, *Tetrahedron Lett.*, 1976, 61; S. Yamada and H. Akimoto, *ibid.*, 1969, 3105.
- 2 J. E. Johansen, B. D. Christie, and H. Rapoport, J. Org. Chem., 1981, 46, 4914.
- 3 S. Takano, T. Nishimura, and K. Ogasawara, *Heterocycles*, 1977, 6, 1167.

- 4 J. M. Bobbitt and J. P. Willes, J. Org. Chem., 1980, 45, 1978.
- 5 F. Ungemach, M. Dipierro, R. Weber, and J. P. Cook, J. Org. Chem., 1981, 46, 164, and references 7-12 cited therein.
- 6 G. Massiot, T. Mulamba, and J. Lévy, Bull. Soc. Chim. Fr., Part II, 1982, 241.
- 7 F. Ungemach, D. Soerens, R. Weber, M. Dipierro, O. Campos, P. Mokry, J. M. Cook, and J. V. Silberton, J. Am. Chem. Soc., 1980, **102**, 6976.
- 8 F. Campagna, A. Carotti, and G. Casini, *Tetrahedron Lett.*, 1977, 1813.
- 9 B. M. Trost, D. O.'Krongly, and J. L. Belletire, J. Am. Chem. Soc., 1980, 102, 7596; B. M. Trost and D. P. Curran, Tetrahedron Lett., 1981, 22, 4929.
- 10 EEDQ = N-ethoxycarbonyl-2-ethoxy-1,3-dihydroquinoline:
 B. Belleau, R. Martel, G. Lacasse, M. Ménard, N. L. Weinberg, and Y. G. Perron, J. Am. Chem. Soc., 1968, 90, 823.
- 11 J. Ficini, A. Guingant, and J. d'Angelo, J. Am. Chem. Soc., 1979, 101, 1318.